3.166 \(\int \frac{a+b x+c x^2+d x^3}{2+3 x^4} \, dx\)

Optimal. Leaf size=176 \[ -\frac{\left (\sqrt{6} a-2 c\right ) \log \left (3 x^2-6^{3/4} x+\sqrt{6}\right )}{8\ 6^{3/4}}+\frac{\left (\sqrt{6} a-2 c\right ) \log \left (3 x^2+6^{3/4} x+\sqrt{6}\right )}{8\ 6^{3/4}}-\frac{\left (\sqrt{6} a+2 c\right ) \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4\ 6^{3/4}}+\frac{\left (\sqrt{6} a+2 c\right ) \tan ^{-1}\left (\sqrt [4]{6} x+1\right )}{4\ 6^{3/4}}+\frac{b \tan ^{-1}\left (\sqrt{\frac{3}{2}} x^2\right )}{2 \sqrt{6}}+\frac{1}{12} d \log \left (3 x^4+2\right ) \]

[Out]

(b*ArcTan[Sqrt[3/2]*x^2])/(2*Sqrt[6]) - ((Sqrt[6]*a + 2*c)*ArcTan[1 - 6^(1/4)*x])/(4*6^(3/4)) + ((Sqrt[6]*a +
2*c)*ArcTan[1 + 6^(1/4)*x])/(4*6^(3/4)) - ((Sqrt[6]*a - 2*c)*Log[Sqrt[6] - 6^(3/4)*x + 3*x^2])/(8*6^(3/4)) + (
(Sqrt[6]*a - 2*c)*Log[Sqrt[6] + 6^(3/4)*x + 3*x^2])/(8*6^(3/4)) + (d*Log[2 + 3*x^4])/12

________________________________________________________________________________________

Rubi [A]  time = 0.143739, antiderivative size = 176, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 11, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.44, Rules used = {1876, 1168, 1162, 617, 204, 1165, 628, 1248, 635, 203, 260} \[ -\frac{\left (\sqrt{6} a-2 c\right ) \log \left (3 x^2-6^{3/4} x+\sqrt{6}\right )}{8\ 6^{3/4}}+\frac{\left (\sqrt{6} a-2 c\right ) \log \left (3 x^2+6^{3/4} x+\sqrt{6}\right )}{8\ 6^{3/4}}-\frac{\left (\sqrt{6} a+2 c\right ) \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4\ 6^{3/4}}+\frac{\left (\sqrt{6} a+2 c\right ) \tan ^{-1}\left (\sqrt [4]{6} x+1\right )}{4\ 6^{3/4}}+\frac{b \tan ^{-1}\left (\sqrt{\frac{3}{2}} x^2\right )}{2 \sqrt{6}}+\frac{1}{12} d \log \left (3 x^4+2\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2 + d*x^3)/(2 + 3*x^4),x]

[Out]

(b*ArcTan[Sqrt[3/2]*x^2])/(2*Sqrt[6]) - ((Sqrt[6]*a + 2*c)*ArcTan[1 - 6^(1/4)*x])/(4*6^(3/4)) + ((Sqrt[6]*a +
2*c)*ArcTan[1 + 6^(1/4)*x])/(4*6^(3/4)) - ((Sqrt[6]*a - 2*c)*Log[Sqrt[6] - 6^(3/4)*x + 3*x^2])/(8*6^(3/4)) + (
(Sqrt[6]*a - 2*c)*Log[Sqrt[6] + 6^(3/4)*x + 3*x^2])/(8*6^(3/4)) + (d*Log[2 + 3*x^4])/12

Rule 1876

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(x^ii*(Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2)))/(a + b*x^n), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1248

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(d + e*x)^q
*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{a+b x+c x^2+d x^3}{2+3 x^4} \, dx &=\int \left (\frac{a+c x^2}{2+3 x^4}+\frac{x \left (b+d x^2\right )}{2+3 x^4}\right ) \, dx\\ &=\int \frac{a+c x^2}{2+3 x^4} \, dx+\int \frac{x \left (b+d x^2\right )}{2+3 x^4} \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{b+d x}{2+3 x^2} \, dx,x,x^2\right )+\frac{1}{12} \left (\sqrt{6} a-2 c\right ) \int \frac{\sqrt{6}-3 x^2}{2+3 x^4} \, dx+\frac{1}{12} \left (\sqrt{6} a+2 c\right ) \int \frac{\sqrt{6}+3 x^2}{2+3 x^4} \, dx\\ &=\frac{1}{2} b \operatorname{Subst}\left (\int \frac{1}{2+3 x^2} \, dx,x,x^2\right )-\frac{\left (\sqrt{6} a-2 c\right ) \int \frac{\frac{2^{3/4}}{\sqrt [4]{3}}+2 x}{-\sqrt{\frac{2}{3}}-\frac{2^{3/4} x}{\sqrt [4]{3}}-x^2} \, dx}{8\ 6^{3/4}}-\frac{\left (\sqrt{6} a-2 c\right ) \int \frac{\frac{2^{3/4}}{\sqrt [4]{3}}-2 x}{-\sqrt{\frac{2}{3}}+\frac{2^{3/4} x}{\sqrt [4]{3}}-x^2} \, dx}{8\ 6^{3/4}}+\frac{1}{24} \left (\sqrt{6} a+2 c\right ) \int \frac{1}{\sqrt{\frac{2}{3}}-\frac{2^{3/4} x}{\sqrt [4]{3}}+x^2} \, dx+\frac{1}{24} \left (\sqrt{6} a+2 c\right ) \int \frac{1}{\sqrt{\frac{2}{3}}+\frac{2^{3/4} x}{\sqrt [4]{3}}+x^2} \, dx+\frac{1}{2} d \operatorname{Subst}\left (\int \frac{x}{2+3 x^2} \, dx,x,x^2\right )\\ &=\frac{b \tan ^{-1}\left (\sqrt{\frac{3}{2}} x^2\right )}{2 \sqrt{6}}-\frac{\left (\sqrt{6} a-2 c\right ) \log \left (\sqrt{6}-6^{3/4} x+3 x^2\right )}{8\ 6^{3/4}}+\frac{\left (\sqrt{6} a-2 c\right ) \log \left (\sqrt{6}+6^{3/4} x+3 x^2\right )}{8\ 6^{3/4}}+\frac{1}{12} d \log \left (2+3 x^4\right )+\frac{\left (\sqrt{6} a+2 c\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt [4]{6} x\right )}{4\ 6^{3/4}}-\frac{\left (\sqrt{6} a+2 c\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt [4]{6} x\right )}{4\ 6^{3/4}}\\ &=\frac{b \tan ^{-1}\left (\sqrt{\frac{3}{2}} x^2\right )}{2 \sqrt{6}}-\frac{\left (\sqrt{6} a+2 c\right ) \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4\ 6^{3/4}}+\frac{\left (\sqrt{6} a+2 c\right ) \tan ^{-1}\left (1+\sqrt [4]{6} x\right )}{4\ 6^{3/4}}-\frac{\left (\sqrt{6} a-2 c\right ) \log \left (\sqrt{6}-6^{3/4} x+3 x^2\right )}{8\ 6^{3/4}}+\frac{\left (\sqrt{6} a-2 c\right ) \log \left (\sqrt{6}+6^{3/4} x+3 x^2\right )}{8\ 6^{3/4}}+\frac{1}{12} d \log \left (2+3 x^4\right )\\ \end{align*}

Mathematica [A]  time = 0.104701, size = 164, normalized size = 0.93 \[ \frac{1}{48} \left (-2 \sqrt [4]{6} \tan ^{-1}\left (1-\sqrt [4]{6} x\right ) \left (\sqrt{6} a+2 \left (\sqrt [4]{6} b+c\right )\right )+2 \sqrt [4]{6} \tan ^{-1}\left (\sqrt [4]{6} x+1\right ) \left (\sqrt{6} a-2 \sqrt [4]{6} b+2 c\right )-\sqrt [4]{6} \left (\sqrt{6} a-2 c\right ) \log \left (\sqrt{6} x^2-2 \sqrt [4]{6} x+2\right )+\sqrt [4]{6} \left (\sqrt{6} a-2 c\right ) \log \left (\sqrt{6} x^2+2 \sqrt [4]{6} x+2\right )+4 d \log \left (3 x^4+2\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2 + d*x^3)/(2 + 3*x^4),x]

[Out]

(-2*6^(1/4)*(Sqrt[6]*a + 2*(6^(1/4)*b + c))*ArcTan[1 - 6^(1/4)*x] + 2*6^(1/4)*(Sqrt[6]*a - 2*6^(1/4)*b + 2*c)*
ArcTan[1 + 6^(1/4)*x] - 6^(1/4)*(Sqrt[6]*a - 2*c)*Log[2 - 2*6^(1/4)*x + Sqrt[6]*x^2] + 6^(1/4)*(Sqrt[6]*a - 2*
c)*Log[2 + 2*6^(1/4)*x + Sqrt[6]*x^2] + 4*d*Log[2 + 3*x^4])/48

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 252, normalized size = 1.4 \begin{align*}{\frac{a\sqrt{3}\sqrt [4]{6}\sqrt{2}}{24}\arctan \left ({\frac{\sqrt{2}\sqrt{3}{6}^{{\frac{3}{4}}}x}{6}}-1 \right ) }+{\frac{a\sqrt{3}\sqrt [4]{6}\sqrt{2}}{48}\ln \left ({ \left ({x}^{2}+{\frac{\sqrt{3}\sqrt [4]{6}x\sqrt{2}}{3}}+{\frac{\sqrt{6}}{3}} \right ) \left ({x}^{2}-{\frac{\sqrt{3}\sqrt [4]{6}x\sqrt{2}}{3}}+{\frac{\sqrt{6}}{3}} \right ) ^{-1}} \right ) }+{\frac{a\sqrt{3}\sqrt [4]{6}\sqrt{2}}{24}\arctan \left ({\frac{\sqrt{2}\sqrt{3}{6}^{{\frac{3}{4}}}x}{6}}+1 \right ) }+{\frac{b\sqrt{6}}{12}\arctan \left ({\frac{{x}^{2}\sqrt{6}}{2}} \right ) }+{\frac{c\sqrt{3}{6}^{{\frac{3}{4}}}\sqrt{2}}{72}\arctan \left ({\frac{\sqrt{2}\sqrt{3}{6}^{{\frac{3}{4}}}x}{6}}-1 \right ) }+{\frac{c\sqrt{3}{6}^{{\frac{3}{4}}}\sqrt{2}}{144}\ln \left ({ \left ({x}^{2}-{\frac{\sqrt{3}\sqrt [4]{6}x\sqrt{2}}{3}}+{\frac{\sqrt{6}}{3}} \right ) \left ({x}^{2}+{\frac{\sqrt{3}\sqrt [4]{6}x\sqrt{2}}{3}}+{\frac{\sqrt{6}}{3}} \right ) ^{-1}} \right ) }+{\frac{c\sqrt{3}{6}^{{\frac{3}{4}}}\sqrt{2}}{72}\arctan \left ({\frac{\sqrt{2}\sqrt{3}{6}^{{\frac{3}{4}}}x}{6}}+1 \right ) }+{\frac{d\ln \left ( 3\,{x}^{4}+2 \right ) }{12}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x)

[Out]

1/24*a*3^(1/2)*6^(1/4)*2^(1/2)*arctan(1/6*2^(1/2)*3^(1/2)*6^(3/4)*x-1)+1/48*a*3^(1/2)*6^(1/4)*2^(1/2)*ln((x^2+
1/3*3^(1/2)*6^(1/4)*x*2^(1/2)+1/3*6^(1/2))/(x^2-1/3*3^(1/2)*6^(1/4)*x*2^(1/2)+1/3*6^(1/2)))+1/24*a*3^(1/2)*6^(
1/4)*2^(1/2)*arctan(1/6*2^(1/2)*3^(1/2)*6^(3/4)*x+1)+1/12*b*arctan(1/2*x^2*6^(1/2))*6^(1/2)+1/72*c*3^(1/2)*6^(
3/4)*2^(1/2)*arctan(1/6*2^(1/2)*3^(1/2)*6^(3/4)*x-1)+1/144*c*3^(1/2)*6^(3/4)*2^(1/2)*ln((x^2-1/3*3^(1/2)*6^(1/
4)*x*2^(1/2)+1/3*6^(1/2))/(x^2+1/3*3^(1/2)*6^(1/4)*x*2^(1/2)+1/3*6^(1/2)))+1/72*c*3^(1/2)*6^(3/4)*2^(1/2)*arct
an(1/6*2^(1/2)*3^(1/2)*6^(3/4)*x+1)+1/12*d*ln(3*x^4+2)

________________________________________________________________________________________

Maxima [A]  time = 1.48142, size = 279, normalized size = 1.59 \begin{align*} -\frac{1}{144} \cdot 3^{\frac{3}{4}} 2^{\frac{3}{4}}{\left (\sqrt{3} \sqrt{2} c - 2 \cdot 3^{\frac{1}{4}} 2^{\frac{1}{4}} d - 3 \, a\right )} \log \left (\sqrt{3} x^{2} + 3^{\frac{1}{4}} 2^{\frac{3}{4}} x + \sqrt{2}\right ) + \frac{1}{144} \cdot 3^{\frac{3}{4}} 2^{\frac{3}{4}}{\left (\sqrt{3} \sqrt{2} c + 2 \cdot 3^{\frac{1}{4}} 2^{\frac{1}{4}} d - 3 \, a\right )} \log \left (\sqrt{3} x^{2} - 3^{\frac{1}{4}} 2^{\frac{3}{4}} x + \sqrt{2}\right ) + \frac{1}{72} \, \sqrt{3}{\left (3 \cdot 3^{\frac{1}{4}} 2^{\frac{3}{4}} a + 2 \cdot 3^{\frac{3}{4}} 2^{\frac{1}{4}} c - 6 \, \sqrt{2} b\right )} \arctan \left (\frac{1}{6} \cdot 3^{\frac{3}{4}} 2^{\frac{1}{4}}{\left (2 \, \sqrt{3} x + 3^{\frac{1}{4}} 2^{\frac{3}{4}}\right )}\right ) + \frac{1}{72} \, \sqrt{3}{\left (3 \cdot 3^{\frac{1}{4}} 2^{\frac{3}{4}} a + 2 \cdot 3^{\frac{3}{4}} 2^{\frac{1}{4}} c + 6 \, \sqrt{2} b\right )} \arctan \left (\frac{1}{6} \cdot 3^{\frac{3}{4}} 2^{\frac{1}{4}}{\left (2 \, \sqrt{3} x - 3^{\frac{1}{4}} 2^{\frac{3}{4}}\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x, algorithm="maxima")

[Out]

-1/144*3^(3/4)*2^(3/4)*(sqrt(3)*sqrt(2)*c - 2*3^(1/4)*2^(1/4)*d - 3*a)*log(sqrt(3)*x^2 + 3^(1/4)*2^(3/4)*x + s
qrt(2)) + 1/144*3^(3/4)*2^(3/4)*(sqrt(3)*sqrt(2)*c + 2*3^(1/4)*2^(1/4)*d - 3*a)*log(sqrt(3)*x^2 - 3^(1/4)*2^(3
/4)*x + sqrt(2)) + 1/72*sqrt(3)*(3*3^(1/4)*2^(3/4)*a + 2*3^(3/4)*2^(1/4)*c - 6*sqrt(2)*b)*arctan(1/6*3^(3/4)*2
^(1/4)*(2*sqrt(3)*x + 3^(1/4)*2^(3/4))) + 1/72*sqrt(3)*(3*3^(1/4)*2^(3/4)*a + 2*3^(3/4)*2^(1/4)*c + 6*sqrt(2)*
b)*arctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x - 3^(1/4)*2^(3/4)))

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [B]  time = 6.53729, size = 580, normalized size = 3.3 \begin{align*} \operatorname{RootSum}{\left (165888 t^{4} - 55296 t^{3} d + t^{2} \left (6912 a c + 3456 b^{2} + 6912 d^{2}\right ) + t \left (- 864 a^{2} b - 1152 a c d - 576 b^{2} d + 576 b c^{2} - 384 d^{3}\right ) + 27 a^{4} + 72 a^{2} b d + 36 a^{2} c^{2} - 72 a b^{2} c + 48 a c d^{2} + 18 b^{4} + 24 b^{2} d^{2} - 48 b c^{2} d + 12 c^{4} + 8 d^{4}, \left ( t \mapsto t \log{\left (x + \frac{- 41472 t^{3} a^{2} c + 82944 t^{3} a b^{2} + 27648 t^{3} c^{3} + 5184 t^{2} a^{3} b + 10368 t^{2} a^{2} c d - 20736 t^{2} a b^{2} d + 10368 t^{2} a b c^{2} - 6912 t^{2} b^{3} c - 6912 t^{2} c^{3} d + 648 t a^{5} - 864 t a^{3} b d - 1728 t a^{3} c^{2} + 3888 t a^{2} b^{2} c - 864 t a^{2} c d^{2} + 864 t a b^{4} + 1728 t a b^{2} d^{2} - 1728 t a b c^{2} d + 864 t a c^{4} + 1152 t b^{3} c d + 864 t b^{2} c^{3} + 576 t c^{3} d^{2} - 54 a^{5} d + 270 a^{4} b c - 270 a^{3} b^{3} + 36 a^{3} b d^{2} + 144 a^{3} c^{2} d - 324 a^{2} b^{2} c d + 24 a^{2} c d^{3} - 72 a b^{4} d + 180 a b^{3} c^{2} - 48 a b^{2} d^{3} + 72 a b c^{2} d^{2} - 72 a c^{4} d - 72 b^{5} c - 48 b^{3} c d^{2} - 72 b^{2} c^{3} d + 72 b c^{5} - 16 c^{3} d^{3}}{81 a^{6} - 54 a^{4} c^{2} + 432 a^{3} b^{2} c - 216 a^{2} b^{4} - 36 a^{2} c^{4} + 288 a b^{2} c^{3} - 144 b^{4} c^{2} + 24 c^{6}} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+c*x**2+b*x+a)/(3*x**4+2),x)

[Out]

RootSum(165888*_t**4 - 55296*_t**3*d + _t**2*(6912*a*c + 3456*b**2 + 6912*d**2) + _t*(-864*a**2*b - 1152*a*c*d
 - 576*b**2*d + 576*b*c**2 - 384*d**3) + 27*a**4 + 72*a**2*b*d + 36*a**2*c**2 - 72*a*b**2*c + 48*a*c*d**2 + 18
*b**4 + 24*b**2*d**2 - 48*b*c**2*d + 12*c**4 + 8*d**4, Lambda(_t, _t*log(x + (-41472*_t**3*a**2*c + 82944*_t**
3*a*b**2 + 27648*_t**3*c**3 + 5184*_t**2*a**3*b + 10368*_t**2*a**2*c*d - 20736*_t**2*a*b**2*d + 10368*_t**2*a*
b*c**2 - 6912*_t**2*b**3*c - 6912*_t**2*c**3*d + 648*_t*a**5 - 864*_t*a**3*b*d - 1728*_t*a**3*c**2 + 3888*_t*a
**2*b**2*c - 864*_t*a**2*c*d**2 + 864*_t*a*b**4 + 1728*_t*a*b**2*d**2 - 1728*_t*a*b*c**2*d + 864*_t*a*c**4 + 1
152*_t*b**3*c*d + 864*_t*b**2*c**3 + 576*_t*c**3*d**2 - 54*a**5*d + 270*a**4*b*c - 270*a**3*b**3 + 36*a**3*b*d
**2 + 144*a**3*c**2*d - 324*a**2*b**2*c*d + 24*a**2*c*d**3 - 72*a*b**4*d + 180*a*b**3*c**2 - 48*a*b**2*d**3 +
72*a*b*c**2*d**2 - 72*a*c**4*d - 72*b**5*c - 48*b**3*c*d**2 - 72*b**2*c**3*d + 72*b*c**5 - 16*c**3*d**3)/(81*a
**6 - 54*a**4*c**2 + 432*a**3*b**2*c - 216*a**2*b**4 - 36*a**2*c**4 + 288*a*b**2*c**3 - 144*b**4*c**2 + 24*c**
6))))

________________________________________________________________________________________

Giac [A]  time = 1.1216, size = 201, normalized size = 1.14 \begin{align*} \frac{1}{24} \,{\left (6^{\frac{3}{4}} a - 2 \, \sqrt{6} b + 2 \cdot 6^{\frac{1}{4}} c\right )} \arctan \left (\frac{3}{4} \, \sqrt{2} \left (\frac{2}{3}\right )^{\frac{3}{4}}{\left (2 \, x + \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}}\right )}\right ) + \frac{1}{24} \,{\left (6^{\frac{3}{4}} a + 2 \, \sqrt{6} b + 2 \cdot 6^{\frac{1}{4}} c\right )} \arctan \left (\frac{3}{4} \, \sqrt{2} \left (\frac{2}{3}\right )^{\frac{3}{4}}{\left (2 \, x - \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}}\right )}\right ) + \frac{1}{48} \,{\left (6^{\frac{3}{4}} a - 2 \cdot 6^{\frac{1}{4}} c + 4 \, d\right )} \log \left (x^{2} + \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}} x + \sqrt{\frac{2}{3}}\right ) - \frac{1}{48} \,{\left (6^{\frac{3}{4}} a - 2 \cdot 6^{\frac{1}{4}} c - 4 \, d\right )} \log \left (x^{2} - \sqrt{2} \left (\frac{2}{3}\right )^{\frac{1}{4}} x + \sqrt{\frac{2}{3}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+c*x^2+b*x+a)/(3*x^4+2),x, algorithm="giac")

[Out]

1/24*(6^(3/4)*a - 2*sqrt(6)*b + 2*6^(1/4)*c)*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x + sqrt(2)*(2/3)^(1/4))) + 1/2
4*(6^(3/4)*a + 2*sqrt(6)*b + 2*6^(1/4)*c)*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x - sqrt(2)*(2/3)^(1/4))) + 1/48*(
6^(3/4)*a - 2*6^(1/4)*c + 4*d)*log(x^2 + sqrt(2)*(2/3)^(1/4)*x + sqrt(2/3)) - 1/48*(6^(3/4)*a - 2*6^(1/4)*c -
4*d)*log(x^2 - sqrt(2)*(2/3)^(1/4)*x + sqrt(2/3))